144 research outputs found

    Position clamping of optically trapped microscopic non-spherical probes

    Get PDF
    We investigate the degree of control that can be exercised over an optically trapped microscopic non-spherical force probe. By position clamping translational and rotational modes in different ways, we are able to dramatically improve the position resolution of our probe with no reduction in sensitivity. We also demonstrate control over rotational-translational coupling, and exhibit a mechanism whereby the average centre of rotation of the probe can be displaced away from its centre

    A compact holographic optical tweezers instrument

    Get PDF
    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30Ă—30Ă—35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 ÎĽm silica bead. We also present a range of objects that have been successfully manipulated

    Physical Mechanisms of Tropical Climate Feedbacks Investigated Using Temperature and Moisture Trends

    Get PDF
    ArticleOpen access articleTropical climate feedback mechanisms are assessed using satellite-observed and model-simulated trends in tropical tropospheric temperature from the MSU/AMSU instruments and upper-tropospheric humidity from the HIRS instruments. Despite discrepancies in the rates of tropospheric warming between observations and models, both are consistent with constant relative humidity over the period 1979--2008. Because uncertainties in satellite-observed tropical-mean trends preclude a constraint on tropical-mean trends in models we also explore regional features of the feedbacks. The regional pattern of the lapse rate feedback is primarily determined by the regional pattern of surface temperature changes, as tropical atmospheric warming is relatively horizontally uniform. The regional pattern of the water vapor feedback is influenced by the regional pattern of precipitation changes, with variations of 1--2 W m-2 K-1 across the Tropics (compared to a tropical-mean feedback magnitude of 3.3--4 W m-2 K-1). Thus the geographical patterns of water vapor and lapse rate feedbacks are not correlated, but when the feedbacks are calculated in precipitation percentiles rather than in geographical space they are anti-correlated, with strong positive water vapor feedback associated with strong negative lapse rate feedback. The regional structure of the feedbacks is not related to the strength of the tropical-mean feedback in a subset of the climate models from the CMIP5 archive. Nevertheless the approach constitutes a useful process-based test of climate models and has the potential to be extended to constrain regional climate projections.Natural Environment Research Council (NERC

    Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers

    Get PDF
    A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures

    Modelling the bimodal distribution of indoor gamma-ray dose-rates in Great Britain

    Get PDF
    Gamma radiation from naturally occurring sources (including directly ionizing cosmic-rays) is a major component of background radiation. An understanding of the magnitude and variation of doses from these sources is important, and the ability to predict them is required for epidemiological studies. In the present paper, indoor measurements of naturally occurring gamma-rays at representative locations in Great Britain are summarized. It is shown that, although the individual measurement data appear unimodal, the distribution of gamma-ray dose-rates when averaged over relatively small areas, which probably better represents the underlying distribution with inter-house variation reduced, appears bimodal. The dose-rate distributions predicted by three empirical and geostatistical models are also bimodal and compatible with the distributions of the areally averaged dose-rates. The distribution of indoor gamma-ray dose-rates in the UK is compared with those in other countries, which also tend to appear bimodal (or possibly multimodal). The variation of indoor gamma-ray dose-rates with geology, socio-economic status of the area, building type, and period of construction are explored. The factors affecting indoor dose-rates from background gamma radiation are complex and frequently intertwined, but geology, period of construction, and socio-economic status are influential; the first is potentially most influential, perhaps, because it can be used as a general proxy for local building materials. Various statistical models are tested for predicting indoor gamma-ray dose-rates at unmeasured locations. Significant improvements over previous modelling are reported. The dose-rate estimates generated by these models reflect the imputed underlying distribution of dose-rates and provide acceptable predictions at geographical locations without measurements

    Changes in the ceIl membrane of Lactobacillus bulgaricus during storage following freeze-drying

    Get PDF
    The mechanism of inactivation of freeze-dried Lactobacillus bulgaricus during storage in maltodextrin under controlled humidity was investigated. Evidence is presented supporting the hypothesis that membrane damage occurs during storage. A study on the lipid composition of the cells by gas chromatography showed a decrease in the unsaturated and saturated fatty acid content of the cell. Further evidence indicating membrane damage includes a decrease in membrane bound proton-translocating ATPase activity

    The Business Model: Recent Developments and Future Research

    Get PDF
    This article provides a broad and multifaceted review of the received literature on business models in which the authors examine the business model concept through multiple subject-matter lenses. The review reveals that scholars do not agree on what a business model is and that the literature is developing largely in silos, according to the phenomena of interest of the respective researchers. However, the authors also found emerging common themes among scholars of business models. Specifically, (1) the business model is emerging as a new unit of analysis; (2) business models emphasize a system-level, holistic approach to explaining how firms “do business”; (3) firm activities play an important role in the various conceptualizations of business models that have been proposed; and (4) business models seek to explain how value is created, not just how it is captured. These emerging themes could serve as catalysts for a more unified study of business models

    Interactions of amphipathic α-helical MEG proteins from Schistosoma mansoni with membranes

    Get PDF
    Micro Exon Gene (MEG) proteins are thought to play major roles in the infection and survival of parasitic Schistosoma mansoni worms in host organisms. Here, the physical chemical properties of two small MEG proteins found in the genome of S. mansoni, named MEG-24 and MEG-27, were examined by a combination of biophysical techniques such as differential scanning calorimetry, tensiometry, circular dichroism, fluorescence, and electron spin resonance spectroscopies. The proteins are surface active and structurally arranged as cationic amphipathic α-helices that can associate with lipid membranes and cause their disruption. Upon adsorption to lipid membranes, MEG-27 strongly affects the fluidity of erythrocyte ghost membranes, whereas MEG-24 forms pores in erythrocytes without modifying the ghost membrane fluidity. Whole–mount in situ hybridization experiments indicates that MEG-27 and MEG-24 transcripts are located in the parasite esophagus and subtegumental cells, respectively, suggesting a relevant role of these proteins in the host-parasite interface. Taken together, these characteristics lead us to propose that these MEG proteins may interact with host cell membranes and potentially modulate the immune process using a similar mechanism as that described for α-helical membrane–active peptides
    • …
    corecore